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COMPRESSIBLE FLOW THROUGH REED VALVES
FOR PULSE JET ENGINES

I. HINGED REED VALVES

Paul. Torda
1. P. Villalba
J. H. Brick

INTRODUCTION

A survey of the literature on pulse jet engines nas shown some of the disadvantages of the
reed type intake vaives, such as restricted intake area, short reed endurance, etc, In meeting
the problems indicated by research, investigators have incrcased the intake area by using coni-
cal, instead of flat reed valve banks. Some increase in reed life was also achieved by using

necprene coated and laminated reeds as well as neoprene coated valve seats.

In existing pulse jets the reeds move with undulating motion, i.e., they oscillate about
their momentarily bent shapes. This means that for such reeds, as compared with reeds which
form smooth nozzles throughout their motion, the snflow is restricted, Calculations carried
out, but not presented here, have shown that for certain valve geometry and mass distribution
this undulating motion of the reeds occurs. A basic postulate in the present analysis is that
the reeds always form smooth nozzles throughout their motion. By this action of the reeds the
inflow efficiency as well as the reed endurance increases. The prevention of oscillations about
momentarily bent shapes of the reeds reduces their bending stresses. The bending stresses will
be further reduced if the reeds are hinged instead of being clamped, as is custamary, since the

support constraints are reduced.

Numerous calculations have been carried out in order to determine the simplest method use-
ful for numerical work. It is thought that the presented closed form solution of the non-linear

differential equations fulfills this requirement.

The numerical examples are included as illustrations only. Although these numerical exam-
ples are believed to be correct, they do not include sufficient variation of the parameters in-
volved to represent more than an illustration of the trend rather than complete data for purpose
of design. The basic dimensions for the numerical examples were chosen to approximate those of

the McDonnell 8-inch pulse jet engine.

This analysis shows that when slender valves and tapered mass distribution are combined

non-undulating motion of the reeds occurs. Thus smooth inflow results and adverse transverse

accelerations of the reeds are avoided.
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The present report deals with the analysis of air inflow between hinged reeds. The case ’

air inflow between clamped reeds is treated in a sepesrate report. :.".7- 5
Ty

AIR INFLOW ANALYSIS o

"“.‘t

L

In the present analysis the flow upstream of the valves was assumed parallel to the valve "
axis. This is equivalent to having a relatively short cowl ahead of a valve bank, the cowl AR
L

diameter being large compared with the width of the individual valves, i.e., the valve bank e
being composed of a large number of valves. Isentropic change of state of the inflowing air f'-_'.\-:
was assumed, and a quasi-one-dimensional approach chosen. This latter approach takes into ]
account the time variation of the flow area between the valves as well as the space and time A.dd
variations of the flow velocity and pressure. K Figure 1, page 28. \"
The interaction between the inflow conditions, the valves, and the combustion chamber :f‘_:.':j
pressure is taken into account by satisfying the Euler dvmamic equations, the continuity
equation, the equation of change of state, and the equation of forced recd vibration. Ne -::
thecretical or experimental data were available regarding the variation of the combustion -::::_
chamber pressure behind che reeds. Therefore this pressure variation was calculated as a re- ::::;‘
sult of the analysis. The application of the results for design purposes is discussed briefly “n g

in section B, page 7. .

The transition between inflow and combustion chamber conditions is taken into account by
prescribing a physically probable velocity variation at an arbitrary time and an arbitrary

cross section of the reed nozzle., This velocity variation can be modified easily to fit actual

transition conditions as they are brought into evidence by better understanding of the aero- L*.
Vi

thermodynamic process in the cambustion chamber. Such a change would modify the numerical :...
results but would not affect the analysis. *‘j‘
The requirement that the reeds form smooth nozzles throughout their motion influenced L

the choice of the space function, X(x), of the analysis. The starting time, t=0, was chosen

at a time when the reeds alreaay are open slightly. This allowed the use of an exponential
function for X{(x). If the starting time is to be chosen when the valves are closed, an addi-.
tive function has to be used together with the exponential tunction. The additive function
would complicate the expressions used for numerical work. Since the flow is well behaved
during the very short time, At, which elapses while the valves open slightly, and its analy-
sis would not yield significant results, the additive function could be left out of the an-
alysis and the starting time defined as explained above. However, At, as well as the amount

of slight opening, can be decreased arbitrarily without adverse effects on the results. The

use of a single term for X(x) greatly simplifies the numerical calculations.




' This analysis considers non-steady, compressible flow between hinged reed valves during
the period of opening. Once fully open, the valves will remain in this position until the
pressure on the valve surface on the combustion chamber side exceeds that on the .-flow side,

) at which time the valves will start to close. The numerical work could not be extended to
include the closing period of the valves for lack of expe-.rental as well as of analytical
data on the pressure variation directly behind the valves.

For the convenience of the reader a list of symbols is presented ahead of the Appendix
on page 16. The nwnber designations of the equations are identical in the body of the report
and in the Appendix. Thus equations missing in the report indicate intermediate steps which

are given in the appendix.

(A) BASIC EQUATIONS DEFINING THE FLOW

The equation of continuity is;

3(pA)  B(uph)
p + l;lp (a.l)
g ot ox
The Euler dynamic equation of motion is:
i du u 19
g g e L (a.3)

ot X p ox

The equation of isentropic change of state is:

b4
£ . (9—) (a.5)
Pao Po
A new variable, B = B(x%,t), is defined as the product of the density, p = p(x,t),

and the cross sectional area between a pair of reeds, A= Alx,t), or formally

B = Blx,t) = plx,t) Alx,t) (a.9)
The continuity equation (a.l) then can be integrated to yield

1[. 38
u = - LP&( t) -/ — dx.] (b.1)
J ot

where K (L), an arbitrary time function, arises in the integration.

Using the equation of isentropic¢ change of state (a.5) and the expression for the ve-

locity, U, (b,1) and its derivatives, the equation of motion (a.3) can be written in the

form




22,

3B B ]
._dx = -Cin ?a K1 (t) = .jdx +
B 9t 3, (b.3)

12 X
3
}--—? l:lg(t)- -—dx:’
B? ax L

Differentistion of eq. (b,3) with respect to X gives rise to a quadratic equation, the roots
of which can be expressed as
21 vb?T —dp, D

I:K,(t) - __.dx Js ,éD? It (b.6)
1

where D, , D, and D, are functions of B and p, and are defined in Appendix - I, eq. (b.5).

The non-linear integro-differential equation, as given by (b.6), can be integrated in
closed form if it is postulated that
(1) in the expression under the square root sign (a function of X and t) the varia-
bles are separable; and
(2) that in the expression (a.9) the variables are also separable. The use of the
' method of separation of variables restricts the domain of solutions. It is
Jmown, however, that the solutions thus obtained are sufficiently general.

Part (1) of the postulate reduces eq. (b.6) to two simultaneous equations and together
with part (2) separates the variables in both of them. Thus we have the following:

Fram (1):
l:&(t) - zgdx‘l . Dyt VETKIRTET (b.7Ta)
| 2D,
and
D? - 4D,D, = £(x)t(t) (b.7b)
and fram (2):
Bx,t) = X(xiTi{t) (b.9)

Differentiating eq. (b.7a) with respect to X and separating the variables in egs. (b.7a
and b."b}, the following equations are obtained

vVt dt
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(b, 15)

s = 97 . 2 2
y & X (.dl‘) ﬂ-gx(ﬂ)
dx dx? dx dx? dx?

and 2 2y 3 2 s
9_/.5-‘ zxix) ax"d=§ +56(§)-63§ql+x’ﬂ
\ - dx [ \dx dx? \dx/ dxdx*  dx®

Equation (b.15) is a non-linear total differential equation in two undetermined functions
of X, namely X(x) and £(x}. Since the combination of the two functions must satisfy eq. (b.15),
it is valid to choose one of the functions and determine the other from the differential e-

quation.

Two different functions were chosen for X(x) and the corresponding expreasions for £(x)
were determined.

For case |
X
XI(X) = beC (c.1)
ox
&I(x) = aIeﬂ (c.4)
and for case 1]
1
A Y -
Xn(x) = {a,(1-3 ) (x-a4)} a‘a (c.2)
LY 1"'0
ggx) = ol {ag(1-a,) (x-a,)) 8y (c.16)

In the following the analysis is carried through for the exponential case (I) €q. c.1)
but for case (II) (eq. c.2) only the final results are given, since the procedure is identi-

cal in both cases.

Introducing the expressions for ¥(x) and £(X), as given by\7c.1) and (c.4), 1nto e-
quation (b.7b) and integrating, the following expression is obtained for the density
(p=oix,t)).

4T T\’
I ij__I . (c.?)
1 1 (4dt? dt a (L)
S £ R X~ 171 e-2CX | K e” %X+ K it)
11 el T I, 2, ¢ c
s

where {,(*} and X (t) are arbitrary time functions, arising in the integrations.

Introducing the expressions for u(x,ti, 3{x,t! and X(x). as given by equations (c.9,
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5.9 and c.] respectively), the Euler equation (a.3), after integration, yields a second ex-
pression for the density p = p(X,t)

a*T, far ? dK, (b

] 2 — v .
_1.py-==_1_{.dt VB T R,
11 celr qr | ) e, T 6C,c c,

Expressions (c.7) and (c.10) sust Oe identical for all values of the independent varia-

" bles (x and t). Comparinon of powers of X yields relationships between the time functions
(see Appendix). The general expressions for the density, area and velocity distribution

during inflow are

{¢.13)
71 [dr 1 a x S ¥-
0 ={.___ 1 (_Ie'cx -___)-j( a_Ie-zcx 4._(1_Ie'cx)*}( (e
Lo [ar evml 4e 22 | et 4 2 ‘
1
cxX~= f¥r. dt
B X(x)T(t) - %’I/ I
A = _ = . —— = bévp e (C.l4)
I I
P P
where Py is given by equation (c.13), and
Vi (Ve 1
o= =l %__I e=CX 4 _% (c.15)
I e la A2
I
Using the function for X(X), as given in case II
3
Xn(x) = {a,(1-a,) (x-a,)}“a’ (c.2)
the general expressions f‘or the density, area and velocity are ifounc to be
3 3
2 2
y-1l A dt 2/ a a iodt
o= —-[(x-a, )® ( I_I o) o ) + -(- —i) Lo, [— —& -
I C, ovr_ a1 D s\ 2 al Vo ae
I ju
1
o ¥-1
(c.18}
A + I -k it)
° IfII) 4&211{ ’ ] }
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A =B = X(x)T(t) = 5 Oa (xe- 7 -1

g ~°2 222587 “IIe {-2a, (x-a,) oy (6.19)
P p

Vhere o is given by eq. (¢.18), and

-

a i
upt Vg { Y [-Za,(x-a, )J T aa (x-a, )} (c.20)

o P
Ty

The results, obtained so far, have to be adapted to the particular problem at hand.

(B) SOLUTION OF THE BOUNDARY VALUE PROBLEM

The expressions for density, velocity, and area distribution of the flow, as given a-
bove for cases I and II, represent solutions of the basic equations (a.1), (a.3), and (a.5).
The arbitrary constants and ti:e functions in these express:ons must be determined for the
boundary value problem under consideration. The undetermined time function, t(t), which ap-
pears in these expressions, determines the pressure, velocity, and area variations through-
out the air inflow.

This time function, t{t),should be derived from the transition condition between the
air inflow and the aero-thermodynamic process in the combustion chamber. It was not possi-
ble to do this, since, as was stated in the introduction, insufficient data were available.
It was necessary, therefore, to select a function, the use of which would res 1} in a physi-
cally probable solution of the problem.

The function t(t{) was selected by prescribing a time variation of the inflow velocity
at some arbitrary position along the X axis. Two functions were used for t({) bounding the
entire domain of possible variations. For design purposes numerical analyses should be
carried out for many other examples within this domain, similar to those presented. The de-
signer can then select the proper velve parameters by comparison of the results of these nu-
merical examples with the particular combustion chamber pressure variation of interest to

him.

For the inflow between hinged reed valves, the initial and boundary conditions to be
satisfied may be stated as follows:
1. At the inlet section (%=0) the area of inflow must be constant for any time (ti.
This can be expressed

for x = Q

L e e e
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A(0,t) = constant = Ao = A (d.le)

At the start of the inflow (1=0) the density at the inlet section is very close to
stagnation density, so that with sufficient numsrical accuracy p(0,0)=pg. From
equation (a.9), therefore

for x=0 and t =0

B (0,0) = pghg o (d. 1b)

For the start of the inflow (t=0) and the exit section (x=h) there is for zero area
a singularity point in the B function, as has been explained earlier in the beginning
of AIR INFLOW ANALYSIS, page 2. This point has been excluded from the analysis. It
should be pointed out, however, that the area at this point and time may be made arbi-
trerily small without detriment to the condition on the density. The density at this
point and time is slightly less than the density at the inlet section, so that a nearly
canstant density distribution along X results for t=). The amount of gap between the
valves at the exit section can be so chosen as to give this desired density distribu-
bion. This condition can be expressed

for t =0 and x=h

B(h,0) = pghy o (d.1c)

At the end of the opening time (4=t ), the density at the exit section [p(l.,tl)],
and the area at the exit section [A(h,tl)] should be prescribed values. This con-
dition can be expressed as

Bth,t ) = A .1d
1) Moo v 0,0 (d.1d)

where the constants i, V have to be

u<l
v<l

The choice of v, however, is governed by thc fact that the reeds in the fully open
position must present a somewhat inclined surface facing the combustior chamber, so
that the ‘closing’ pressure can build up behind the reeds.

As has been pointed cut previously an appropriate time variation of the velocity, at
some defined position, e.g. at the entrance (x=0}, haa to be prescribed. The opening
of the reeds was considered to occur during the maximu pressure difference on both

sides of the valve reeds. Thus, it seemed to be appropriate to prescribe this ve-




locity variation to increase from a small initial value towards that of a maximum
during the inflow. This can be expressed
for x = 0 a8

ulo,t) = f(t) (d.le)

Again the an'lysis is given for case I only (i.e. where X(x) = 1%*) and the result-

ing expressions for case [I 1
(i.e. where X(x) = {a,(1-a, )()(--&1)}1-8‘1 )

ar¢ include’ at Lhe end of this section.

The arbitrary function of time ¥, (t) in equation (c.14) was determined from the con-
dition that the area at the inlet section be constant for any time (d.la), Substi-
tuting the values x=0 and A“A 0.0 in equation (c.14), X (t) was found to be

c, Vipdty aldr L ‘ 2
K (1) = — z s____l._+__1__1 —L
y-1 a 4e® dt 14 7\’
. (d.3)
The arbitrary constants b and ;{_ appear in equation (c.14) only as a product term,
. and this product could, therefore, be evaluated from condition (d.lb), i.e.
Blo,0) = pSA (d.4)

Recalling that B=B(x,t) has been defined to be 3=p.A equation (a.9) and using e-
quations (c.l13 and c.14), the corstant C has been determined from condition (d.lc).
Here the fact that the density at x=h and t=0 is only approximately equal to that
of ,the stagnation density, has been neglected, since in the numerical evaluations
it has been found that plh,0) = .99695- Thus p(h,0) = o s used. Thus

(d.5)

For the determination of the unknown time function, t(t), the velocity distribution

at the entrance to the valves, condition (d.le), has been selected as

n n
u(o,t):bo+b,t,+ er +bt o= 2 bt o= f(L) {d.6)
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and t(t) expressed from (d.6) and (c.15)

c?f(t)?
t (t) = — (d.7)

I Gy 1

{z "=

Using condition (d.1d) and equations (c.13 and c.l4) /:x_I'is calculated

—

2c

Va. = — (A_-1) . (d.11)
I )\2 T
I

where _
C[jf(t)dt]t
A, ¢ e

I ch - In w (d.10)

Inserting the values of the constants and arbitrary functions of time, as were de-

termined from the boundary conditions, into equations (c.13, c¢.14 and c.15), and
noting that )\I is eliminated from the expressions by this process, the final ex-

pressions used for the numerical examples are as follows:

- f . (t) Ar-1 - flu)?2 [ (Ar-1)2 -
. {7_{ [_3.__( 2l e Cx-l)-x) . ( ! (e 2% 1)+

p
I C, Lo \ oe 0% 2
-Ccx C, %Cfﬁ (t) +l
+(A_-1)(e -1)> + —p;" e * J (d.12)
I yelt
c’x._c_fi,(,t)
81
. -1
AI AO,ODS e 391 ‘ (d.13)
where Py is given by (d.12)
f'(
. L) (1A 1) &7 + 1) (d. 14)
AI

The expressions for Case IT are

- 2
o v_1[<_w_ -2_m_)_> (mn)z )
I c, . +2a, [AII +ay)?
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BZPL L)X C e ) i o
+ I o 7"t AI[+ 224 ~\ }7 1
28,00 * 28,10 5l ©

i
A_=A o {~ 20 }l‘ P.AIf "o {D }_1
0 0,08 \y.,, I (d.25)

where Py is given by (a.24)

. T T
Wt LT LTS

ST IE I
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-2(x-a,)
} (d.26)

s

e % 5 "u‘-
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Thus far the flow equations were discussed and solved for the present boundary value
problem. ‘lo adapt the reed shapes to the bounding stream-line pattern, it is necessary to
investigate the forces acting upon them. ‘This was done by consideriig the differential e-

quation of reed motion.

mm..—'. LI
'1' 1 L"‘.' ." '." t ..' .

(C) DETERMINATION OF ThE MASS DISTRIBUTION AND INERTIA PROPERTIES OF THE REEDS \
The mass distribution of the reeds was determined from the equation expressing the equi- :.j
librium between the pressure forces acting on both sides of the reeds and their elastic and '_-:,'
inertia forces. ::j;
The differential equation for the forced vibretion of a rced is "'

B’( g 2 ) N

o’ 3y (e.1) =

- m 2 qlx,t) i‘

ox? ot? -

11 <

> .'.‘-
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Considering the equilibrium of forces over a small element of the reed, for which the s
moment of inertia was considered constant, this equation reduces to

4 ? o
Kl bt/ +m f—z = q(x,t) (e.la) )
x4 ot o
The forcing function q(X,t) consists of known pressure forces on the inflow side, and “‘}q
of unknown pressure iorces on the combustion chamber side of the reeds. As was stated earlier ;';‘_:;

in the report, no theoretical or experimental evidence was available to indicate the form of 0.

[
the pressure variation downstream of the valves, and, therefore, for a prescribed mass distri.
bution of the reed the pressure variation on the combustion chamber side of reeds was calcu-

lated from the following equation.
_ 4 *?
q (x,tTr=q (x,t) -EI——D-, -m—-z (e.1b)
cC 1 axl ati

For the specific mass distributions chosen in the numerical calculations, the variations
of pressure on the combustion chamber side of the reeds obtained from equation (e.lb) appeared
to be qualitatively correct,

The numerical examples, included as illustrations of the analysis, can now be presented.

(D) ILLUSTRATIVE EXAMPLES

The numerii:nl calculetions presented in this paper were guided by consiu:irations of actual
pulse-jet engines now in existence. Inasmuch as very little reliable experimental datu relat-
ed to the air inflow problem exists, the numerical values of the parumeters were chosen with a

view towards establishing general trends.

The basic valve dimensions were chosen as closely as possible to those of the 8 inch
McDonnell pulse-jet engine.

Preliminary calculations indicated that, for a given valve length, the ratio of inlet
area to exit area at the beginning of the cycle should be relatively small to prevent ex-
cessive transverse acceleration of the reeds at the exit section.

A suitably chosen mass distribution of the reeds then enables them to follow the instan-

tanecus bounding streamlines.

In the numerical work it was assu.ed that the pulse-jet was operating at sea level con-
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ditions with a forward velocity of 500 m.p.h, ‘lhis velocity was thought to be compatible

‘with the present applications of the pulse jets, The inflow time as a percentage of the

total cycle time was unknown and was, therefore, chosen from analysis of pressure graphs
as approximately 1/3 of the period, and the opening time of the valves to be 1/6 of the
total period.

The significance of the area ratio AO,O led to the choice of this parametcr as a
As

h,0
basic one and, for a valve length of one'inch} the following values were used fcr the nu-

merical calculations:

A
Case I 20,0
: 321 & 51
Ah,o
Case II  Ac,0 :
- = 3.33:1

Following the method described in chapter (c) the values of the arbitrary constants
and the arbitrary time tunctions were determined from the boundary conditions formulated
there.

The types of velocity distributions at the entrance of the valves were chosen as shown
in Fig. 2. This figure shows that, {or the smaller area ratios (3:1 and 3.33:1), higher in-
take velocitiey result. The three velocity curves with increasing tangents (Nos. 1, 2, 4)

. result in slower opening of the reeds at the beginning of the movement, whereas in the case

of the curve with decreasing tangents (No. 3) the rate of opening is greater at the start.
Thus, higher reed accelerations result for curves 1, 2 and 4 at the end of the reed movement
than for curve 3. This latter curve (3) also permits greater filling of the combustion cham-
ber during the opening of the valves, as can be seen by a comparison of the areas under the

curves.

Figures 3 to 6 incl. represent the air intake velocity distribution (u) as a function
of the inflow direction (%) for various times i{t). A comparison of Figs, 3, 5 and 6 shows
that, for case I (the exponential case), and an area ratio approximately 3:1 (Figs. 3and 5),
the velocity distribution with time is much more regular than for case II (the polynomial
case) (Fig. 6). This is probably due to the differeice in the original curvature of the
reeds. For convenience dimensionless coordinates(UD = a—i ande = %\ are included in the

graphs.

Fig. 7 shows the scale drawings of the reeds in their initial and final positions for

both cases and all area ratios.
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Figs. 8-11 incl. show the instantaneous streamline shapes for various times (t). A
camparison of these figures shows,

(1) that the exponential case (I) gives amoother streamlines than the poly-
nomial case (1Y),

(2) that the reed movement in the case of the velocity curve with decreas-
ing tangents (curve 3 Fig. 2) yields less acceleration than the other
velocity curves, and

(3) that the reeds for case I and area ratio 5:1 would have to suffer great
bending deflections if they were to follow the instantaneous streamlines.
This would be possible only if the reeds were extremely thin and, there-
fore, impractical from the design standpoint.

Figs. 12-15 incl. show the variation of the inflow pressure versus distance along the
direction of flow (X) for various times (%), Again a more advantageous pressure variation

with time is obtained with the velocity distribution of curve (3) Fig. 2.

The values for z% and ?_)_', needed for the evaluation of eq. (e.lb), giving the
ot x4

pressure distribution on the combustion chamber side of the reeds, are plotted in Figs, 16-19

incl. for case I and for area ratios 3:1 and 5:1 only. Figs. 17 and 19 show that the ac-

celerations and bending of the reeds for the 5:1 area ratio are excessive.

Figs. 20 and 21 show how the variation of the pressures on both sides of the 1eeds in non-
dimensional form. The curves show that the combustion chamber pressures are functions of time
and space.

CONCLUSIONS

The analysis shows that for efficient filling of the combustion chamber of pulse-jet
engines a large number of tightly spaced reed valves should be employed.

The necessity of handling large amounts of air is still doubted by some investigators.
Present day trend of pulse jet design, however, seems to confirm the opinion expressed in
the introduction, namely, that for 1\ efficient aero-thermodynamic process of the pulse-
jet the ‘restriction’ of the intake valves should be s duced.

No attempt was made in this paper to suggest spatial reduction of the intake restriction.
Work towards this effect has been going on for some time at PIBAL. Here the attempt was




made to ia;eétigibé the possibility of aerodynamic and mechanical improvement of the reed

valves.

Numerical work along the lines laid down hete, should be continued in order to es-
tablish the effect of the varistion of all pcssible parameters, thus presenting data for

dq
'j the designer on a broader basis and possibly in a graphical, and, therefore, more usetul
\ form.
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LIST OF SYMBOLS

constants in Ap(X) function

area variable, denoting cross sectional area

of reeds

ctoss sectional

cross sectional

nross sectionail

cross sectional

constant in £(x)

area between

area between

area between

area between

functions

constant in XI(X) function

a pair

a pair

a pair

a pair

of

of

of

ot

reeds

reeds

reeds

reeds

b product of density and area variables

‘constant iu T(t! function

constant in XI(X) function

constant

specific heat at constant pressure

specific heat at constant volume

adiabatic constant

functions of S(%x,t) and p{x,t), defined in eqs. (b.5)

constant

modulus of elasticity of reed material

et
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between a pair

at x=0,

at x=0,

at X=h,

at X=h.




2%'; V' “hiin) : length of the reed

. |

5‘3 I tin*) moment of inertia of the reed cross section

X

A x (in) ' half distance between a pair of reeds p‘%
A
,:" Ky (b)) 08) K (L) Ko (8 ) Kgln) arbitrary functions of time arising in :::,‘;:%‘
': ‘ integrations B

L
Sy

¥ A , constant arising in separation of variables K
i p v
;;' . oy,
e ‘ L
4 b sec? . L{‘.
Ry m {— mass of the reed per unit length Lo
' in RS
M density factor
:: :.:::J
o v area factor o
:-::, -_;::-.
" p(x,t) pressure variable
. qix,t) forcing function, resultant pressure on both sides of the

reed (ib/in)

R
l., gjlx,t) pressure on the intake side of the reed (lb/in)
3 -
ﬁ ) Qeelx,t) pressure on the combustion chamber side of the reed (1lb/in)
sy
A
ﬁ plx,t) density variable
:-1 5 stagnation density
<1 S
48
:} t time variable
E-j t opening time }.\.3
) i
] m . . . o
oy T(t) time tunction
T(t) time function
ﬁ u{x,t) velocity variable
X -
1 e
» 17
¥l

8%

v §

)
-




Ve 2
o

w (in)

X

X{x)

El(x)

y (x,t)

density fundtion

depth of reed valve

space variable

space function

space function

dependent space variable

subscript zero refers to free stream conditions

subscript I and Il denote two specific cases in the numerical

examples.




APPENDIX

QUASI ONE-DIMENSIONAL INFLOW BETWEEN REED VALVES

(A) BASIC EQUATIONS DEFINING THE FLOW

The equation of continuity can be written:

3ph) | dluph)

= Q (a.1)
9t . Ox
where A=2(2t) is the cross sectional area
p = plx,t) 1s the density of the gas
u = ux,t) is the velocity of the flow (a.2)
X is the coordinate in the direction of the flow
t is the time

The Euler equation of flow is:
du du 1 9p
—_— F Umma F o =
ot X p K

0 (a.3)

~where p = pix,t) is the pressure of the gas and U, p, X, t are (a.4)
defined in (a.2).

Tlhe equation describing adiabatic change of state is:

Y
P
(——) - B (a.5)
Po Po
where Do is the free stream pressure
Po is the free stream density (a.6)
c
y=_P is the adiabatic constent
Cy
C and ¢ are specific heat at constant pressure and constant

volume respectively.

19

B

TR T T AL A e e-
.’l‘l-l"l]b t'.“- ‘. ':"- O
o 0502 e et el

. et
b P

o a e’

N ¢ Y0

A

WET

WL

g J ISR [ADTYic  ) RECRAAORS

PP
LA

SO

. "‘ S
R BT A A

e
Fl




ST RN (N AE B VT -

Using eq. (a.5), eq. (a.3) can be written:

du du -2 9
.._.+u==+Ctpyai=O (a.7)
ot o X
where
Cy = TPo const, (a.8)
Y
Po

1Introducing a new variable (R), being the product of the area (A) and density (p),

i.e.:

B = p.A = Blx,1) (a.9)

equation (a.l) can be written:

oB BR du
—_ t +B — = (a.10)

9t Bx o
vB) INTEGRATION OF THE BASIC EQUATIONS

Using the method of variation of parameters, the continuity equation in its rewritten

form (a.10) can be integrated to yield an expression for the flow-velocity:

u-u I}(,(t) - a_}:dx] (b.1)

where K (t) is an arbitrary function of time arising from the integration.

Substuting U and its derivatives into eq. (a.7), we obtain:

o 2 LT[ 2w ]2 (2]}
x B2 (9t ot?

K - o8 E-P.?: K - E.'? )

—H}‘ J.ggdx:'(aat axliK’ jatjdx)f

(b.2)

20




23
3!
i
.y
i
't
|

- A _da.

Lt el - o AR -

i

- B, . L e A
. .

§ A SRR .
.

ol SR TR T T B WA, b LR AR s =X LV ot e NEEEEEE. A A A W K. R A_BERER. kbbb KR R AL
Y -

or, after rearranging:

3 3 -3 . ?
[_K*-E’fd{]hcxnp“ _2+§_8[}(’-/3§de+
ot M2 _ % B3 | 3,

+_1?’_B[x,-;fdﬂ
B it

Differentiating eq. (b.3) with respect to X and arranging terms, we obtain:

Q)

2
B
D, Kz'fﬁde +DQI:K,- -—-dx]*Da=O
ot J ot -
where
2
Pe) 92B
D1=—l|:2(—}3>-5———]
B? X ox?

d ¥
D, ..1[4_83_8-28_9]

B2 dx ot At
. 2
-2 d ) -2 9y 2/ 9B *
D, =c,{sp“_° +_[:Bp“_p7} +_(._) .8
x  x xJ B\ 3t a2

Noting that eq. (b.4) is a quadratic, we can write:

K- §_de] _ D,z O - 4DD,
3t 2D,

(b.3)

(b.4)

' (b.S)

(b.6)

Equating the discriminant to a (yet to be determined) function of x and t, in which

however, the variables should be separated, we get two simultaneous equations instead of

eq. (b.6):
[Ka" {8 de o DozvE %

at 2c,

D? -4D,D, = &.1

where E = E(X) and T = 1 {t)

21

(b.7a)

(b.7b)

(b.8)




Assuming the solution of eq. (a.9), giving the expression for pA, in the form:

B (x,t) = X(x). T(t) = XT (b.9)

eq. (b.7a) reduces to:

A% g O

e
[x, "d_?ﬁde: TR (b.10) =
' z(gl()z—xﬂ 4(95)2-%?3 N
dx dx? dx

and eq. (c.7b) can be transformed to:

dX 42X [ dx \?® o

= =g = S
3 [v~2 Bp:l !: 7-2 Bp:l{ dx dx? dx } _ oy
- P — + o] =

o . HI 82X gy YT Y
dx? dx/ oo

(b.11) N

dr\ 2 2 d2 2 It

() o) -mir oo o

. E1X? o, Nt { dx dx’}+ dt? L&

T g2 2 C,T® 47X dx \ 2 C.T e
e S - X

o \ax )/ dx? \dx o

()

.. o 4w, -
< . ",

. A !L.. o
LR X [ ]
PR © B RN

AN N AR

Differentiating eq. (b.10) with respect to X and separating variables, this equation
can be written:

/ -\ :
TVt dX &X [ d&X \? d%X (dﬂx Y‘ ==
X - — | = — x| —
dx d¢® dx/ or'y dx® / (b.12)
AN
where )\ is a constant. , ’-Q{
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Gwosmg the positive sign of the square root expression, from equation (b.12) we have:

=N e

g-'l-‘ = AT {(b,13)
dt

and iutegrating, we get:

Y EZ 2N
T = e S vz (b.14)

Equation (b,12) also yields:

vy 2 2 9 T sy
Ve 2x(3’5)-x= ﬂ} \/E'[G G{() gy 3% 47X yed XJ
dx dx/  dx?] dx - dx dx® dx?

dX 4°X (dX)’ dz2x (d’X)’
X — = +\—] 7 ex\—
dx dx?® dx dx? g Ax?

= A (b.15)

(C) SPECIAL SOLUTIONS
Two examples are worked out in this report,
Case I % =X (x) =te | (c.1)
' 1
1-a,

Cuse 1T ¥ = Xp (x) ={a,(1-a1) (xua,)} (c.2)

Case C.I. Using equation (c.1) in equation (b,15) above, the denomirator, transposed to
the right side, becomes zero. Equating the numerator (or left hand side) to zero and simplifying,
one obtains;

————t =0 (c.3)

Integrating (c.3), we obtain an expression for &7, to be:
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E_=a e (e.4)

Introducing into equation (b.11) the values of X_, given by expression (c.l), and &_,
given by expression (c.4), and still using the symbol TI, instead of expression (b.14) for
brevity, equation (b.11) yields:

"
A A, (V3T dt
: T = 3e If I (b.14a)
1 I
2
. 2 T.
Vvev -{ S (ﬁ)} - =L qemter (c.5)
ox C,Ty dt? C,Tj* \dt 4C, c?
where
= 778 Y
v - p — (CIG)
3k

Using the method of variation of parameters, equation (c.5), when integrated twice with
respect to X, yields:

1 ., 1 (1 4T 1 gr\* Ta. _gex
-__p &, ——— ———I--— ~—-I') % X - IIe -
y1 I Ce | T, dt*  TZ\dt 8C,c*

I I
(c.T)

1 ~CX
3 K (tle + K (t)
where K,(t) and K (t) are arbitrary functions of time arising from the integrations. Using
the value for XI from equation (c,1) and recalling that B was given as:
B(x,t) = p.A = X.T (b.9)
B can now be expressed:

cx
BI = bTIe (c.8)
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o . and thus the expression (b.1) for U becomes b

1 o 1 a1, oK
@ ’ U, & —— K‘e - — ——— (Cog) :
. I bTI CTI dt :"g.‘_'j;'. :

Inserting this value of U, and its derivatives into the Euler dynamic equation (a.3), and
integrating, we get a second expression for pI.

/ \
1 1 (1 @'T. 1 /4T \® Mo
(RSN pIy 1 » a—— ——— ——’I—._——; (_—I- ‘ X= :.::.
-1 Coe lT dt® T2 \dt | g

{c.10) v

. 1 “2CX + 1 dK, ‘:-"::.
2T§,b’C, TIbC,C dt E:;'.:‘__

I.

O
‘
>

Comparing coefficients of equal powers of X in equations (c.7) and (c.10), we obtain ;

the following relations between the arbitrary time functions which arose from the integrations:

Kl(t.) - K = _b__T Va t i
2 2 I =

va 1 dy V—' dT O
RARTIE A Sy I (c.11) i
‘ £C, c? 2\/1—1‘ dt TI dv i

or by substituting expression (b.14) for T, and letting \ = A s

o) CE 2

K‘ (tl ) - -- ':-:‘:'
&c? :-::-:;:

: 4

I { I _E__ b } (c.11a) ;§:5
e n v i =
I I .

K (t)

K‘(t) V‘u .’.'.
C,

K, (t) =
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" Thus the following expressions are obtained:

N

cx-'--

. e x}f”l dv (c.12)
LA S S

(c.13)

cx-‘—, -th - )
A = bs e AI[ ipI % (c.14)

i
;..“_I R } (c.15)

Cas~ C.II. Using the expresrion (c.2) for XH:

1

1 -

Xy = X (%) = {a,(1-a, ) (x-34)) (c.2)

Substituting (c.2) in equation (b.15) and integrating:

44, -o ‘

1
E_«al {a,l1-a,) (x-a,]) ™ (c.16)
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e and TH is defined by equation (b.14)

Aer [V dt :
. . ]If I b.14b
o T]I pne (b.14b)

' Employing the same method as for case C.I., the following expressions are obtained for

( vl y iy ’ s U/
Enxt) pII(x t) An(x t) anduII (x,t)
—
. e)\nf TII dt |
Bp=og Ap - I — (¢.17)
T {-2a, (x-a,)}?
y-l - A dx
o ={-—-‘ ()(-5.“)2 Hi -—?n-“/?)\a T +
L C, 2V'cn dt oo
- (':.18)
9 ' - P
. 2/-a,\? a s 1 dr a? ’
b —) —Z(x-a ¥ [ — L '6)\111[[ >*—‘13qu'}(5 }
a3\ 2 ag V’rH dt 4a; |
(v1_4d
. e)\H[ TH t
AII: _n - {pn-l } (C.lg)
 {-Ba,lx-ag )}’
an I3
up = Vg =L [-2a,(x-an> -2>\H<x-a3>$ (c.20)
a2 :




D. SOLUTION OF THE BOUNDARY VALUE PROBLEM

For the inflow between hinged valves the initial and boundary conditions to be satisfied
may be noted as:
1. Alo,t) =4 s=A

. Blo,o) spA (sp A )
2. B pso.o P

s o,t

3. B(h,o)xpsﬁho y (d.1)

4, B(h,tl) =Hp v Ao’o

5. ufo,t) = f(t) J
where

Ao,o = Ao,f =2 kv \

QS is stagnation density

# and v are tactors less than one  (d.2)
. f(t) is a given function of time
and tl is the opening time of the valves (this value will be used later) }

CENTER

PLANE t=0 START '
OF MOTION

ts *t END

FIGURE 1
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< For Case I.,the arbitrary function of time K (L) is determined from condition 1{d.1)
to be:

C; (A )\%[’/T_‘dt‘ Vo dt T
K (t) _i_i._QLQ el L % L 141 (d.3)

y-1 BIb I

- I (d.4)
bﬁI Ao,o ps €

where (f\/;;dt)o denotes the value of the integral at t = Q.

) Frdm condition 3(d.l) we obtain:
L] l A
c = - Inf 2u8 : : (d.5)
h Ao,o/
To find the unknown time function t_ = 1_(t), the function f(t) in condition §(d.1)
has to be chosen. Assuming that f(t) cen be approximated by a polynomial, i.e.:
n n d.6)
ulo,t) = f(t) =b + bt +bt?eer = 5T bt (d.6
I o} n=o n
therefore from equation (c.15) 2 is found to be:
c?f(y)?
'tI = 'rI(t) = — -
) 3 e, 1 % (d.7)
2c 2
. M

29

F e
L7

Ly
'SI"U-—' ‘-‘. KR

L) I.
PRY A

P,
WA

i b
ERERPS - ., h‘l



Evniﬁnping the following expressions:

f e )
I vao 1
A
2
2c AI

where

t
fo(t) » [byt + by— + b,
2

therefore at t = 0

(j#?;‘dt> =0
and equation (d,4) reduces to:

b8, - Ao,ops

dTI LBt (1)

" 3“*7?3

fa(t) = [b, +28bt +38bgt? + -] = 5 nbt

Using condition 4 (d.1) the constant q

gc cff, (t)}

fr-_. ____*-~1}
chk -« lnuy

denoting

I

o) e

9
3

is determined:

3C

L T R e L L A T CRL S A S T R S BRI ST

(d.8)

N+

n bnt

O n+l

(d.4a)

Hd.9)

(d.10)
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I

I

2
M

becomes:

I

(d.11).

Inserting the values of the constants by (d.4a) and ¢_ (d.11) together with the
arbitrary time functions K, (t) (d.3) and TI {d.7) in equations (c.13) (c.14), and (c.15)
we obtain the following expressions to be used in the numerical calculations:

P, (1)
R Nl s
I le, [A

I

(8.1} (e -1y ) +

A-
<_1_f
¢

3 flt)3/1 -
(e"%*-1) -x > - a1 7

£l1) -
u s —{ 611 iy

8 \2 I
1 (d.12)
C y-1 Seh) 7
hi SN P
y-1 8
£, (t) :
- -1
A {p } (d.13)
I :
(d.14)

Note: When values of b3y d.4a) and q_ (d.11) are substituted in equation (c.13),
(c.14), and (c.15) as shown above, the arbitrary constant AT cancelled out of all the

expressions.

For Case II., the arbitrary function of time K;(t) is determ.ned from condition 1 (d.1)

1,1
Ks(t) = —_{_

r-1

b

E
0,0

(Z2a,a,)

a3

L. - ' o 2N dr
3 o )\qudt‘l}i yu{ ”IITII \ AH TH} ,
a

‘l C, 2C1V1‘Hdt

(d.15)
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From condition 2 (d.1) the arbitrary constant Bﬁ may be determined in the form:

. L ")\ ,[f\“t’ dt]o
.ﬁTT i AO.ODS [Zasa.]’ « 1 I (d.16) o

where, as in the preceeding case [jvxndt](, denote the value of the integral at t=0.

From condition 3(d.1) the arbitrary constant a, becomes:

A s h
s - ) 7 _ :
; Ao % (d.17) o
1- A
h,o

Using the expression for u_ (0,t) as before,

I
7 - o n - (d 18)
u_to,t) = T bt = F(t) :

ohe obtains:

Ft)?
‘r - B
H an au -;- 2 (dolg)
{2 =) ~op}
: ag \ 23,

and denoting:

o

-1

o ~
J dt,={ - + 2\ A Fo(t)
'n a,\ 2a, o !

LI
where P, (t) = fngobnt dt

b (d.20)

and therefore t=0
(JVr_dt), =0
I
and equation (d.16) reduces to:

1 .
B ® Ao’ops (2a,a,)? (d.16a)

32

NATLIER FOL T AP T WO T e TR IACIOTI P LA I " W e W SIS
----- e T L L e T e L R T e T T

..... ",' A




PP

- —

- wlemal

WA NI A IR LIRSS LS W S N .

2 A,

L)
2"

1
di

8y 2a,

where

n
F, (4= i[z b t’]
dt 7n=0 n

Usi:ng condition 4 (d.1) one can calculate:
~3
a
d_ = A 8, | — A
o 2] 5

where

(F, (1)1
t
A= 4 -23,

B l:f"’ ) h;:.% s:]

|

dTJ. =2[:EL.E )!*2)‘IP"] o P, (t)

Inserting the values of the arbitrary constants j_ (d.16a) and a_ (d.22) together with
the arbitrary time functions K (t) (d.15) and 1 (d.lg) ‘in equations
(c.20) we obtain the following expressions to be used in the numerical calculations:

(c.18), (c.19), and

{ y-1 [( -2F(1)2
p = — - _
I C (8 + 28, )°

3

{e

1 ( 1 >’ N ( -6F (1)°
s \a /| I (b + 28,7
A2 F(t)?
R Sl +E:. { 0
Ra (A_+2a ) 41| 'S

I
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iR R A T sennsindtid

f el
- 7 At 2a, -
A ch o |22 e I {p. ‘} (d.25)
I 0,0 S| (x-a,) I : ‘
1
1]
-a
{An{- s “} -2(x~ay) (d.26)
aa
u]:I = Flt) .
L by 2, |

Note: When values of BH (d.16a)}, an (d.22) are substituted in equations (d.12), (d.13)

and (d.14), as shown above, the arbitrary constant A_ cancelled out of al] the expressions,

I

E. DETERMINATION OF THE MASS DISTRIBUTION OF THE REEDS

The differentisl equation for the forced vibration of a reed is

Ca Ry ?
——[EI-—-" ]+ m~—}-’ = qlx,t) {e.1l)
ax? oax? ot?
where
is the modulus of elasicity (lb/in?) )
I is the moment of inertia (in‘) _
'
m is the mass of the reed per unit length -Lm—,':i } (e.2)
in
. q is the resultant pressure force of pressures acting
) on both sides of reed (lb-in) J

Inasmuch as the equilibrium equatinn (e.l) was used for small elements of the reed
over which the moment of inertia was considered constant, equation (e.l) may be written:

CN ¥
EI it n -—-y = q(x,t) (e.1a)
ox* JL?

In equation {(e.la) the right hand side (the forcing function) consists of:

qix,t) = qi(x,t) - qcc(x,t) ' (e.3)




where
q,l is the pressure force on the inflow side of the reeds (1lb/in) (e.4)
e.
q is the pressure force on the combustion chamber side of the

o reeds (lb/in)

iherefore, equation (e.la) may be written: .

> » ]
oy . mZy (e.lb) ~

q (x,t) =q (x,t) ¢ EI ~
n cc i et 2 i,

AL W
b)) S
o where " :
) EI -—% is the bending force per unit length (lb/in) o
< o (e.5) o
m LY is the inertia force per unit length (lb /in) W

e A2 Ny -
o X
h Iyl ey
% o
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FIGURE 2

PRESCRIBED INFLOW-VELOCITY DISTRIBUTION AT THE
ENTRANCE OF THE VALVES

4. and 3. Case I, airea ratio 3:1
2. Case I, area ratio 5:1
5. Case II, area ratio 3.33:1
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FIGURE 3

VELOCITY VARIATION DURING INFLOW AT
VARIOUS TIMES

Case I, area ratio 3:1, corresponding to
curve 1, Fig. 2.
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